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Abstract
We study the phase-space geometry associated with index 2 saddles of a
potential energy surface and its influence on reaction dynamics for n degree-of-
freedom (DoF) Hamiltonian systems. In recent years, similar studies have been
carried out for index 1 saddles of potential energy surfaces, and the phase-space
geometry associated with classical transition state theory has been elucidated.
In this case, the existence of a normally hyperbolic invariant manifold (NHIM)
of saddle stability type has been shown, where the NHIM serves as the ‘anchor’
for the construction of dividing surfaces having the no-recrossing property and
minimal flux. For the index 1 saddle case, the stable and unstable manifolds
of the NHIM are co-dimension 1 in the energy surface and have the structure
of spherical cylinders, and thus act as the conduits for reacting trajectories in
phase space. The situation for index 2 saddles is quite different, and their
relevance for reaction dynamics has not previously been fully recognized. We
show that NHIMs with their stable and unstable manifolds still exist, but that
these manifolds by themselves lack sufficient dimension to act as barriers in the
energy surface in order to constrain reactions. Rather, in the index 2 case there
are different types of invariant manifolds, containing the NHIM and its stable
and unstable manifolds, that act as co-dimension 1 barriers in the energy surface.
These barriers divide the energy surface in the vicinity of the index 2 saddle
into regions of qualitatively different trajectories exhibiting a wider variety of
dynamical behavior than for the case of index 1 saddles. In particular, we
can identify a class of trajectories, which we refer to as ‘roaming trajectories’,
which are not associated with reaction along the classical minimum energy
path (MEP). We illustrate the significance of our analysis of the index 2 saddle
for reaction dynamics with two examples. The first involves isomerization on a
potential energy surface with multiple (four) symmetry equivalent minima; the
dynamics in the vicinity of the saddle enables a rigorous distinction to be made
between stepwise (sequential) and concerted (hilltop crossing) isomerization
pathways. The second example involves two potential minima connected by
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two distinct transition states associated with conventional index 1 saddles, and
an index 2 saddle that sits between the two index 1 saddles. For the case of
non-equivalent index 1 saddles, our analysis suggests a rigorous dynamical
definition of ‘non-MEP’ or ‘roaming’ reactive events.

PACS numbers: 05.45.−a, 45.10.Na, 82.20.Db, 82.30.Qt

1. Introduction

Transition state theory has long been and continues to be a cornerstone of the theory of chemical
reaction rates [1–6]. In a number of papers in recent years, it has been shown that index 1
saddles3 of the potential energy surface give rise to a variety of geometrical structures in phase
space, enabling the realization of Wigner’s vision of a transition state theory constructed in
phase space [7–29].

Following these studies, it is natural to investigate the phase-space structure associated
with saddles of index greater than 1 and to elucidate their possible dynamical significance. In
this paper, we describe the phase-space structures and their influence on transport in phase
space associated with index 2 saddles of the potential energy surface for n degree-of-freedom
(DoF) deterministic, time-independent Hamiltonian systems.

The phase-space manifestation of an index 1 saddle of the potential energy surface is an
equilibrium point of the associated Hamilton’s equations of saddle–center–. . .–center stability
type. This means that the matrix associated with the linearization of Hamilton’s equations
about the equilibrium point has one pair of real eigenvalues of equal magnitude, but opposite
in sign (±λ) and n − 1 pairs of purely imaginary eigenvalues, ±iωk, k = 2, . . . , n.

The phase-space manifestation of an index 2 saddle of the potential energy surface is an
equilibrium point of the associated Hamilton’s equations of saddle–saddle–center–. . .–center
stability type. The matrix associated with the linearization of Hamilton’s equations about
the equilibrium point then has two pairs of real eigenvalues of equal magnitude, but opposite
in sign (±λ1,±λ2) and n − 2 pairs of purely imaginary eigenvalues, ±iωk, k = 3, . . . , n4.
Informally, an index 2 saddle on a potential surface corresponds to a maximum or ‘hilltop’ in
the potential [30–32].

A variety of algorithms exist for determining critical points on potential surfaces [31–33].
The number of higher index critical points on a potential surface must be consistent with the
Morse inequalities (provided that the critical points are non-degenerate) [31, 32], and this
constraint is often useful in ensuring that all critical points have been located.

It has however been argued that critical points of index 2 and higher are of no direct
chemical significance [31, 34]. According to the Murrell–Laidler theorem, if two minima on
a potential surface are connected by an index 2 saddle, then there must be a lower energy path
between them involving only ordinary transition states (index 1 saddles) [32, 35]. (There are
certain well-understood limitations to the Murrell–Laidler theorem [36].) It is therefore true

3 Consider a potential energy function V = V (q1, . . . , qn) that is a function of n coordinates {qk}. (Coordinates
describing translation and rotation are excluded.) At a non-degenerate critical point of V , where ∂V/∂qk = 0, k =
1, . . . , n, the Hessian matrix ∂2V/∂qi∂qj has n nonzero eigenvalues. The index of the critical point is the number of
negative eigenvalues.
4 Without loss of generality, throughout this paper all equilibrium points considered will be located at the origin with
zero energy.

2



J. Phys. A: Math. Theor. 42 (2009) 205101 G S Ezra and S Wiggins

that, provided that the reaction coordinate is defined as a minimum energy path (MEP) [31],
it cannot pass through an index 2 saddle on a potential surface [32]. If however the reaction
coordinate is instead associated with a gradient path (steepest descent/ascent) [34, 37, 38],
then it is possible for an index 2 saddle to lie directly on the reaction path [39].

Index 2 saddles (SP 2) were studied in some detail by Heidrich and Quapp [30], who
identified two (extreme) classes of SP 2 critical points. The first class, ‘virtual’ saddles of
index 2 (V-SP 2), are associated with two essentially independent index 1 transition states
in different parts of a large molecule, and so can be thought of simply as the direct product
of two index 1 saddles; an example of a V-SP 2 saddle occurs in the effectively independent
internal rotation of the methyl groups in dimethyl ether [40]. In the second class of saddles,
‘proper’ saddles of index 2 (P-SP 2), the motions associated with the two imaginary vibrational
frequencies at the saddle (‘downhill’ motions) involve the same sets of atoms, and so represent
inherently two dimensional dynamical processes.

Examples of proper index 2 potential saddles abound. Heidrich and Quapp discuss the
case of face protonated aromatic compounds, where high-energy saddle points of index 2
prevent proton transfer across the aromatic ring, so that proton shifts must occur at the ring
periphery [30]. Index 2 saddles are found on potential surfaces located between pairs of
minima and index 1 saddles, as in the case of internal rotation/inversion in the H2BNH2

molecule [41] or in urea [42], or connected to index 1 saddles connecting four symmetry
related minima, as for isomerization pathways in B2CH4 [43]. In general, index 2 saddles are
found separating symmetry related transition states in so-called ‘narcissistic’ transformations
[44].

It is quite plausible that, for low enough potential barriers [45] or at high enough energies
[46], saddles with index >1 might well play a significant role in determining system properties
and dynamics. There is for example a continuing debate concerning the role of higher index
saddles in determining the behavior of supercooled liquids and glasses [47–55]. Computations
on 256 atom LJ binary mixtures [50] show that a significant fraction of saddles with index �2
in high-dimensional systems are however ‘virtual’ saddles in the sense of Heidrich and Quapp
[30]. The general relation between configuration space topology (distribution of saddles) and
phase transitions is also of great current interest [56]. Several examples of non-MEP or non-
IRC reactions [45, 57–62] and ‘roaming’ mechanisms [63–68] have been identified in recent
years; the dynamics of these reactions is not mediated by a single conventional transition state
associated with an index 1 saddle. Higher index saddles can also become mechanistically
important for structural transformations of atomic clusters [69] when the range of the pairwise
potential is reduced [70].

Earnshaw’s theorem [71] suggests that higher index saddles are likely to be ubiquitous
in classical models of atoms and molecules, where all particles interact via the Coulomb
potential. The role of index 2 saddles in the (classical) ionization dynamics of the Helium
atom in an external electric field [72–74] has in fact recently been studied from a phase-space
perspective by Haller, Palacian, Yanguas, Uzer and Jaffe [75].

Index 2 saddles have been mentioned by Toda, Komatsuzaki and coworkers in the context
of the breakdown of normal hyperbolicity in NHIMs associated with index 1 saddles, as a
result of chaotic motions within the NHIM [76–78]. Specifically, the index 2 saddle has been
proposed as a model for phase-space structure in the vicinity of a particular unstable periodic
orbit in the NHIM [78].

Phase-space structures and their influence on phase-space transport were developed in
some detail for the case of an index 1 saddle of the potential energy surface (henceforth,
‘index 1 saddles’) corresponding to an equilibrium point of saddle–center–. . .–center stability
type for the corresponding Hamilton’s equations [9]. In this paper, we follow a similar path
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for index 2 saddles. (A generalization of phase-space transition state theory from index 1 to
higher index saddles has independently been given by Haller et al [75].)

The outline for this paper is as follows. We begin in section 2 by discussing the phase-space
structure of the inverted parabolic barrier, an index 1 saddle. This elementary example provides
the foundation for our treatment of higher index saddles. In section 3, we consider geometry
and transport associated with a 3 DoF quadratic Hamiltonian for a saddle–saddle–center. This
simple model contains the essential features of the problem we are considering. The quadratic
Hamiltonian is separable (and integrable), and we can therefore consider the saddle–saddle
dynamics and center dynamics separately. The saddle–saddle dynamics is considered in detail
in section 3.2, where we show that the two integrals associated with the saddle–saddle dynamics
serve to classify the geometry of trajectories that pass through a neighborhood of the saddle–
saddle. This ‘reduced dimensionality’ analysis of the saddle–saddle dynamics associated with
separability of the quadratic Hamiltonian is central to our analysis. We introduce a symbolic
representation of the qualitatively distinct classes of trajectory behavior in the vicinity of
the saddle–saddle equilibrium and show that this symbolic representation can be placed into
direct correspondence with the different classes of trajectories in the vicinity of the potential
hilltop.

For completeness, and in analogy with the 3 DoF case, we consider a quadratic n DoF
model of a Hamiltonian having an equilibrium point of saddle–saddle–center–. . .–center
equilibrium type in the appendix and show that separability of the quadratic Hamiltonian
implies that the 3 DoF analysis easily goes though for the n DoF case, with obvious
modifications. In section 4, we consider the general case of a n DoF fully nonlinear
Hamiltonian having an equilibrium point of saddle–saddle–center–. . .–center stability type.
In a neighborhood of the equilibrium point the Poincaré–Birkhoff normal form theory can
be applied to construct a set of new coordinates in which the Hamiltonian assumes a simple
form (which we describe). In fact, for generic non-resonance conditions on the eigenvalues
of the matrix associated with the linearization of Hamilton’s equations about the equilibrium
point, the normal form Hamiltonian is integrable. We show that integrability provides all of
the advantages that separability provided for the quadratic Hamiltonians: the saddle–saddle
dynamics can be described separately and the two integrals associated with the saddle DoFs can
be used to characterize completely the geometry of trajectories passing through a neighborhood
of the saddle–saddle–center–. . .–center equilibrium point.

As for the case of index 1 saddles, normally hyperbolic invariant manifolds (NHIMs)
[7, 79] associated with index 2 saddles are an important phase-space structure and we describe
the nature of their existence and the role they play in phase-space transport in the vicinity of
index 2 saddles in section 5.

In section 6, we discuss two examples where the phase-space structure in the vicinity
of an index 2 saddle is potentially of importance in a problem of chemical dynamics.
The first example involves isomerization on a potential energy surface with multiple (four)
symmetry equivalent minima; the dynamics in the vicinity of the index 2 saddle enables a
rigorous distinction to be made between stepwise (sequential) and concerted (hilltop crossing)
isomerization pathways [45]. In the second example, two potential minima are connected
by two distinct transition states associated with conventional index 1 saddles, and an index 2
saddle sits between the two index 1 saddles. (The transition states do not have to be symmetry
equivalent [44].) For high enough energies, analysis of the phase-space geometry in the vicinity
of the index 2 saddle enables different classes of reactive trajectories to be distinguished. In
particular, for the case of non-equivalent index 1 saddles, we can rigorously define ‘non-MEP’
or ‘roaming’ events. Section 7 concludes with a discussion of some outstanding problems for
future investigation.
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2. Index 1 saddle: inverted harmonic oscillator

In this section, we give a quantitative description of trajectories passing through a neighborhood
of an equilibrium point of saddle stability type (in brief, a ‘saddle’) for 1 DoF Hamiltonian
systems. While the basic material is of course well known, our discussion will illustrate the
distinction between physical coordinates and normal form coordinates, show how an integral is
used to distinguish qualitatively different trajectories that pass through a neighborhood of the
saddle and develop a symbolic description that describes the qualitatively distinct trajectories
that pass through a neighborhood of the saddle. Establishing these ideas in this simple case
will allow for a straightforward generalization to more DoF, beginning in section 3.

We consider the problem of a one-dimensional inverted harmonic oscillator (negative
parabolic potential), which in suitably scaled physical coordinates (q̄1, p̄1) corresponds to the
Hamiltonian

h1 = λ1

2

(
p̄2

1 − q̄2
1

)
, (1)

with λ1 > 0. In general, a Hamiltonian of this form provides an approximate description of
motion in the vicinity of the top of a (generic, non-degenerate) one-dimensional barrier. The
canonical transformation (q̄1, p̄1) �→ (q1, p1), where

p̄1 = 1√
2
(q1 + p1) (2a)

q̄1 = 1√
2
(q1 − p1), (2b)

transforms the inverted harmonic oscillator Hamiltonian (1) into the normal form

h1 = λ1p1q1. (3)

The associated equations of motion in normal form coordinates are

q̇1 = ∂h1

∂p1
= λ1q1 (4a)

ṗ1 = −∂h1

∂q1
= −λ1p1 (4b)

with solutions

q1 = q0
1 e+λ1t (5a)

p1 = p0
1 e−λ1t . (5b)

The phase-space origin (q̄1 = 0, p̄1 = 0) is therefore an equilibrium point of saddle type.
Phase-space portraits for the inverted harmonic oscillator in terms of the physical variables
(q̄1, p̄1) and the normal form variables (q1, p1) are shown in figure 1. We remark that the
canonical (or symplectic) transformation to normal form coordinates and the Hamiltonian
expressed in these coordinates (known as the ‘normal form Hamiltonian’) are trivial in this 1
DoF case. The real power of the normal form approach becomes clear for 2 and more DoF
where it is a simple matter to describe trajectories near a higher dimensional ‘saddle’, and
the phase-space structures near the saddle can easily be described in terms of (approximate)
integrals and the normal form coordinates (see [16] and references therein).

The Hamiltonian (3) can be written in terms of the action variable

I1 = p1q1 (6)
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Figure 1. The phase-space geometry associated with the inverted parabolic potential in (a) physical
coordinates and (b) normal form coordinates.

which is obviously a conserved quantity (proportional to the Hamiltonian h1). The action I1

can be positive, negative or zero.
The condition I1 = 0 defines 2 co-dimension one5 invariant manifolds (p1 = 0 and

q1 = 0) that intersect at the saddle equilibrium point, which is the most basic example of a
NHIM. More importantly, these invariant manifolds divide the phase plane into four regions
(quadrants) corresponding to qualitatively different types of trajectories.

In terms of the physical variables (q̄1, p̄1), the two quadrants with I1 > 0 are associated
with motions where the particle has enough energy to surmount the top of the parabolic barrier,
so that there is no turning point in the coordinate q̄1 (classical barrier transmission), whereas
the two quadrants for which the action I1 < 0 are associated with motions for which the
particle has insufficient energy to surmount the barrier, so that the coordinate q̄1 exhibits a
turning point (classical reflection from barrier).

To obtain a more precise classification of the possible motions in the vicinity of the
equilibrium point, we define a phase-space neighborhood N of the equilibrium point as
follows:

N ≡ {(q1, p1) | |q1| � ε1, |p1| � ε1}, (7)

for some suitably chosen ε1.6 A trajectory enters N if at some time it crosses the boundary of
N with the velocity vector pointing into N . Similarly for trajectories that exit N . It is easy
to see from (5) that, with the exception of the (zero Lebesgue measure) set of trajectories that
enter N with |q1| = 0, all trajectories that enter N exit N . In fact, we can characterize the
condition for entry and exit of trajectories to and from N as follows:

5 Briefly, the co-dimension of a manifold is the dimension of the space in which the manifold exists, minus the
dimension of the manifold. The significance of a manifold being ‘co-dimension 1’ is that it is one less dimension
than the space in which it exists. Therefore it can ‘divide’ the space and act as a separatrix, or barrier, to transport.
Co-dimension two manifolds do not have this property.
6 For the quadratic Hamiltonians, we consider ε1 (and ε2) can be chosen O(1). When Hamiltonians with higher
order terms are considered, a more careful consideration of the size of ε1 and ε2 is required.
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Condition for entry into N : |p1(0)| = ε1, |I1| < ε2
1.

Condition for exit from N : |q1(0)| = ε1, |I1| < ε2
1.

Trajectories that exit and enter N remain in the same quadrant in the (q1, p1) plane, and
either pass over or are reflected by the potential barrier (this latter interpretation is based on
the Hamiltonian expressed in terms of the physical coordinates). Corresponding to the four
distinct quadrants, we define four classes of trajectory:

• (++) (q1 > 0, p1 < 0),
• (−+) (q1 < 0, p1 < 0),
• (+−) (q1 > 0, p1 > 0),
• (−−) (q1 < 0, p1 > 0).

This description uses both the physical and normal form coordinates, and the notation
indicates the net result of passage through region N in terms of the action of an associated
‘scattering map’. Considering the first item, reading from right to left7, (+, +) refers to a
trajectory in the physical coordinates that enters the neighborhood of the saddle with q̄1 > 0
and exits the neighborhood of the saddle with q̄1 > 0, i.e. it is reflected from the barrier on the
q̄1 > 0 side. In the normal form coordinates, this trajectory corresponds to a trajectory in the
fourth quadrant, (q1 > 0, p1 < 0). Similarly, trajectories of type (−+) enter a neighborhood
of the saddle with q̄1 > 0, pass over the saddle and exit the neighborhood of the saddle with
q̄1 < 0. In normal form coordinates, these correspond to trajectories in the third quadrant,
(q1 < 0, p1 < 0). The remaining two cases are understood similarly.

3. Phase-space geometry and transport associated with a 3 DoF quadratic Hamiltonian
of a saddle–saddle–center equilibrium

In this section, we describe the nature of trajectories as they pass through a neighborhood of an
index 2 saddle for a 3 DoF quadratic Hamiltonian. We will express the Hamiltonian in normal
form coordinates. However, the symbolic representation of the trajectories will be based on
dynamics described in terms of the physical coordinates, as in the previous section.

3.1. Quadratic saddle–saddle–center system

We now consider a 3 DoF quadratic Hamiltonian that describes the dynamics near a saddle–
saddle–center stability type equilibrium point located at the origin:

Hssc = λ1q1p1 + λ2q2p2 +
ω

2

(
q2

3 + p2
3

)
, λ1, λ2, ω > 0. (8)

Note that the variables (q1, p1, q2, p2) in the Hamiltonian (8) are not physical coordinates,
but rather normal form coordinates as defined in equation (2). The Hamiltonian (8) can be
used to describe dynamics in the vicinity of a hilltop (non-degenerate index 2 saddle) in a
three-dimensional potential energy surface.

The Hamiltonian (8) is completely integrable, with (independent) integrals:

I1 = q1p1, I2 = q2p2, I3 = 1
2

(
q2

3 + p2
3

)
, (9)

and can be expressed as a function of the integrals:

Hssc = λ1I1 + λ2I2 + ωI3. (10)

These integrals play a crucial role in our understanding of the underlying phase-space geometry
and transport.
7 The notational convention used here is inspired by quantum mechanics: if the initial (incident) state is denoted by i,
the final (scattered) state is denoted by f , the quantum mechanical scattering amplitude is given by the matrix element
〈f |Ŝ|i〉, with Ŝ being the scattering operator. The transition associated with the scattering event is then f ← i.
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Figure 2. The geometry associated with the 2 DoF saddle–saddle subsystem.

3.2. Phase-space geometry and transport associated with the 2 DoF saddle–saddle
subsystem

An important consequence of the separability of the 3 DoF quadratic Hamiltonian (8) is that an
understanding of the nature of the trajectories passing through a neighborhood of the saddle–
saddle–center equilibrium point can be obtained through a study of the 2 DoF subsystem
corresponding to the saddle–saddle, since motion in the center DoF is bounded and the action
I3 is conserved. The Hamiltonian for this 2 DoF subsystem is

Hss = λ1q1p1 + λ2q2p2, (11)

with integrals I1 and I2 as given in (9).
Hamilton’s equations for the 2 DoF saddle–saddle subsystem are given by

q̇1 = ∂Hss

∂p1
= λ1q1, (12a)

ṗ1 = −∂Hss

∂q1
= −λ1p1, (12b)

q̇2 = ∂Hss

∂p2
= λ2q2, (12c)

ṗ2 = −∂Hss

∂q2
= −λ2p2. (12d)

The phase flow in the vicinity of the saddle–saddle equilibrium is shown in figure 2. In this
figure, we show the phase flow in both the physical coordinates defined in (1) and the normal
form coordinates. The transformation between these two sets of coordinates is given in (2).
Since our Hamiltonian is separable, it is a trivial matter to use this coordinate transformation
on both saddles to express the Hamiltonian in physical coordinates. However, the separability
also means that we can immediately adapt the discussion of the previous section for physical
coordinates to the saddle–saddle case, and it is this approach that we will follow.

8
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As before, we define a neighborhood N of the equilibrium point in phase space as follows:

N ≡ {(q1, p1, q2, p2) | |q1| � ε1, |p1| � ε1, |q2| � ε2, |p2| � ε2}, (13)

for some suitably chosen ε1 and ε2.8 As for the 1 DoF case, with the exception of the (zero
Lebesgue measure) set of trajectories that enter N with |q1| = |q2| = 0, all trajectories that
enter N , exit N . We characterize the condition for entry and exit of trajectories to and from
N as follows:

Condition for entry into N : |p1(0)| = ε1, |p2(0)| = ε2, |I1I2| < ε2
1ε

2
2.

Condition for exit from N : |q1(0)| = ε1, |q2(0)| = ε2, |I1I2| < ε2
1ε

2
2.

As for the 1 DoF unstable equilibrium, we can define different classes of trajectories
characterized by their behavior under the scattering map corresponding to passage through
the region N . For the 2 DoF case, there are 4 × 4 = 16 combinations of quadrants
and 16 types of trajectories. The symbolic description of the behavior of a trajectory
as it passes through a neighborhood of the saddle–saddle with respect to the physical
coordinates q̄k, k = 1, 2, is expressed by the following four symbols, (f1f2; i1i2), where
i1 = ±, i2 = ±, f1 = ±, f2 = ±. Here ik, k = 1, 2 refer to the ‘initial’ sign of q̄k, k = 1, 2
as it enters the neighborhood of the saddle–saddle and fk, k = 1, 2 refer to the ‘final’ sign of
q̄k, k = 1, 2, as it leaves the neighborhood of the saddle. For example, trajectories of class
(−−; +−) pass over the barrier from q̄1 > 0 to q̄1 < 0, but remain on the side of the barrier
with q̄2 < 0.

Of the 16 qualitatively distinct classes of trajectories, the four types
(++;−−), (−+; +−), (+−;−+) and (−−; ++) are the only trajectories that undergo a change
of sign of both coordinates q̄1 and q̄2, and so they are the trajectories that pass ‘over the hilltop’
in the vicinity of the saddle–saddle equilibrium.

As in the 1 DoF case, co-dimension 1 surfaces separate the different types of trajectories.
These are the four co-dimension 1 invariant manifolds given by q1 = 0, p1 = 0, q2 = 0, p2 =
0 (i.e. I1 = 0, I2 = 0). For example, the co-dimension 1 surface q1 = 0 forms the boundary
between trajectories of types (++; +−) and (−+; +−), and so on.

The dynamical significance of this symbolic classification is discussed in section 6 in the
context of isomerization reactions.

3.3. Including the additional center DoF

Because the system is separable, including the additional center DoF has no effect on our
discussion above on the nature of trajectories in the 2 DoF saddle–saddle subsystem as they
pass through a neighborhood of the saddle.

To see this, note that equations of motion for the Hamiltonian (11) are given by

q̇1 = ∂Hssc

∂p1
= λ1q1, (14a)

ṗ1 = −∂Hssc

∂q1
= −λ1p1, (14b)

q̇2 = ∂Hssc

∂p2
= λ2q2, (14c)

ṗ2 = −∂Hssc

∂q2
= −λ2p2, (14d)

8 See footnote 6.
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q̇3 = ∂Hssc

∂p3
= ωp3, (14e)

ṗ3 = −∂Hssc

∂q3
= −ωq3. (14f )

As previously, we define a neighborhood of the saddle–saddle–center equilibrium point in
phase space as follows:

N ≡ {(q1, p1, q2, p2, q3, p3) | |q1| � ε1, |p1| � ε1, |q2|� ε2, |p2|� ε2|q3|� ε3, |p3| � ε3},
(15)

for suitably chosen ε1, ε2 and ε3. We want to describe the geometry associated with trajectories
that enter and leave N . First, note again the fact that Hamilton’s equations are separable and
that the (simple harmonic) motion of q3 and p3 is bounded. It then follows that if q3 and p3

are initially chosen to satisfy the condition for being in N , then they satisfy this condition
for all the time. Hence, the issue of trajectories entering N and exiting N depends entirely
on the behavior of the (q1, p1, q2, p2) components of a trajectory and, as a consequence of
separability, this behavior is exactly as described in section 3.2.

We now examine some further aspects of the geometry for the 3 DoF quadratic
Hamiltonian model of a saddle–saddle–center. The equilibrium point is located at the origin
and has zero energy. We consider geometric structures in the energy surface for positive
energies:

Hssc = λ1q1p1 + λ2q2p2 +
ω

2

(
q2

3 + p2
3

) = E > 0. (16)

It is clear from (14) that q1 = p1 = q2 = p2 = 0 is a two-dimensional invariant manifold in
the six-dimensional phase space. Using (16), its intersection with the five-dimensional energy
surface is given by

ω

2

(
q2

3 + p2
3

) = E > 0. (17)

This is a periodic orbit in the energy surface but, more generally, it is an example of a NHIM.
The coordinates q1, p1, q2, p2 can be viewed as coordinates for the normal directions of the
NHIM, and it follows from the nature of the asymptotic (in time) behavior of these coordinates
(see (14)) that this NHIM has a three-dimensional stable manifold and a three-dimensional
unstable manifold in the five-dimensional energy surface. Further discussion of the role of
NHIMs is given in section 5.3.

4. n DoF, higher order terms in the Hamiltonian, and the Poincaré–Birkhoff normal
form

The examples we have considered so far have been exceptional—quadratic, separable—
Hamiltonians (which implies that they are completely integrable). Now we will show that
for a general time-independent Hamiltonian, in a neighborhood of an equilibrium point of
saddle–saddle–center–. . .–center stability type, a ‘good set of coordinates’ can be found in
terms of which the Hamiltonian assumes a simple form for which the results described above
hold. Moreover, these coordinates are obtained via a constructive algorithm.

For completeness, in the appendix we consider in detail the nature of trajectories associated
with a quadratic n DoF Hamiltonian model that describes the dynamics near a saddle–saddle–
center–. . .–center stability type equilibrium point, and then we consider the case where higher
order terms are included in this model.

10



J. Phys. A: Math. Theor. 42 (2009) 205101 G S Ezra and S Wiggins

4.1. Normal form for n DoF

Specifically, in a neighborhood of an equilibrium point of saddle–saddle–center–. . .–center
stability type, the Poincaré–Birkhoff normal form theory can be used to (formally) construct a
symplectic change of coordinates so that in the new coordinates the Hamiltonian has the form

H = λ1q1p1 + λ2q2p2 +
n∑

i=3

ωi

2

(
q2

i + p2
i

)
+ f (q1, . . . , qn, p1, . . . , pn), (18)

where f (q1, . . . , qn, p1, . . . , pn) assumes a particularly simple form that is amenable to
analysis. This is discussed in some detail, with particular relevance to reaction dynamics,
in [16]. For our purposes, if we assume that the purely imaginary eigenvalues satisfy the
non-resonance condition k3ω3 + . . . + knωn 	= 0 for any n − 2 vector of integers (k3, . . . , kn)

with not all ki = 0 (that is, (k3, . . . , kn) ∈ Z
n−2 − {0}) and the real eigenvalues satisfy the

(independent) non-resonance condition k1λ1 + k2λ2 	= 0 for any 2 vector of integers (k1, k2)

with not all ki = 0, i = 1, 2, then f (q1, . . . , qn, p1, . . . , pn) can be represented as an even
order polynomial in the variables

I1 = q1p1, I2 = q2p2, Ik = ωk

2

(
q2

k + p2
k

)
, k = 3, . . . , n. (19)

In other words, we can express the normal form Hamiltonian in this situation as9

H(I1, I2, I3, . . . , In), (20)

with the associated Hamilton’s equations given by

q̇1 = ∂H

∂p1
= ∂H

∂I1

∂I1

∂p1
= ∂H

∂I1
q1, (21a)

ṗ1 = −∂H

∂q1
= −∂H

∂I1

∂I1

∂q1
= −∂H

∂I1
p1, (21b)

q̇2 = ∂H

∂p2
= ∂H

∂I2

∂I2

∂p2
= ∂H

∂I2
q2, (21c)

ṗ2 = −∂H

∂q2
= −∂H

∂I2

∂I2

∂q2
= −∂H

∂I2
p2, (21d)

q̇k = ∂H

∂pk

= ∂H

∂Ik

∂Ik

∂pk

= ∂H

∂Ik

pk, (21e)

ṗk = −∂H

∂qk

= −∂H

∂Ik

∂Ik

∂qk

= −∂H

∂Ik

qk, k = 3, . . . , n, (21f )

and it can be verified by a direct calculation that Ik, k = 1, . . . , n are integrals of the motion
for (21).10

9 The normal form for the saddle–saddle–center–. . .–center has not received a great deal of individual attention in
the literature. Nevertheless, this particular form of the normal form has been well known for some time. See, for
example, [85, 86]. See also the documentation of the normal form software available at http://lacms.maths.bris.ac.uk/
publications/software/index.html.
10 The normal form algorithm operates in an iterative fashion by simplifying terms in the Taylor expansion about the
equilibrium point ‘order by order’, i.e. the order M terms are normalized, then the order M + 1 terms are normalized,
etc. The algorithm is such that normalization at order M does not affect any of the lower order terms (which have
already been normalized). The point here is that although the algorithm can be carried out to arbitrarily high order,
practically we must stop the normalization at some order (i.e. truncate the Hamiltonian). In practice, we have found
that truncations of the normal form Hamiltonian can be extremely accurate according to various tests which we discuss
in section 4.2.
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Since Ik, k = 1, . . . , n are constant on trajectories, it follows that the partial derivatives
∂H
∂Ik

, k = 1, . . . , n are also constant on trajectories. Hence, it follows that the structure of
equations (21) is extremely simple, and this is a consequence of the integrability of the normal
form.

The possible role of resonances (commensurabilities) between the saddle eigenvalues λi

in the breakdown of normal hyperbolicity in NHIMs has been discussed by Toda, Komatsuzaki
and coworkers [76–78]. Here, we assume that such resonances are not present; in particular,
we assume λ1 	= λ2.

We can define a neighborhood of the equilibrium point exactly as in equation (A.3) in the
appendix and consider the geometry associated with trajectories that enter and leave L. Even
though the nonlinear Hamilton’s equations (21) are not separable, it follows from integrability
and the structure of (21) that the motion of qk and pk is bounded, k = 3, . . . , n (qk and
pk just undergo periodic motion, individually for each k, although the frequency of motion
can vary from trajectory to trajectory). It then follows that if qk and pk, k = 3. . . . , n, are
initially chosen in L, then they remain in L for all the time. Hence, exactly as in the quadratic
case, the issue of trajectories entering L and exiting L depends entirely on the behavior of the
(q1, p1, q2, p2) components of a trajectory and, as a consequence of integrability, this behavior
is exactly as described in section 3.2 and we have the integrals I1 and I2 as parameters for
describing the geometry of the trajectories during their passage though L.

Exactly as for the model quadratic Hamiltonians, it is simple to verify that q1 = p1 =
q2 = p2 = 0 is a (2n − 4)-dimensional invariant manifold in the 2n-dimensional phase
space. For energies greater than zero (the energy of the saddle–saddle–center–. . .–center), in
the (2n − 1)-dimensional energy surface it is a (2n − 5)-dimensional NHIM with (2n − 3)-
dimensional stable and unstable manifolds (they are co-dimension two11 in the energy surface).
An important property of NHIMs is that they, as well as their stable and unstable manifolds,
persist under perturbation. If we consider a small L, then the terms f (q1, p1, . . . , qn, pn) can
be considered as a perturbation of the quadratic Hamiltonian, for which the NHIM had the
geometrical structure of S2n−5. If the perturbation is ‘sufficiently small’ then this spherical
structure is preserved.

4.2. Accuracy of the normal form

The normalization proceeds via formal power series manipulations whose input is a Taylor
expansion of the original Hamiltonian, H, necessarily up to some finite order, M, in
homogeneous polynomials. For a particular application, this procedure naturally necessitates a
suitable choice of the order, M, for the normalization, after which one must make a restriction on
some local region, L, about the equilibrium point in which the resulting computations achieve
some desired accuracy. Hence, the accuracy of the normal form as a power series expansion
truncated at order M in a neighborhood L is determined by comparing the dynamics associated
with the normal form with the dynamics of the original system. There are several independent
tests that can be carried out to verify the accuracy of the normal form. Straightforward tests
that we have used are the following [10, 12–14, 16, 80]:

• Examine how the integrals associated with the normal form change on trajectories of the
full Hamiltonian (the integrals will be constant on trajectories of the normal form).

• Check the invariance of the different invariant manifolds (i.e., the NHIM and its stable
and unstable manifolds) with respect to trajectories of the full Hamiltonian.

11 See footnote 5.
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Both of these tests require us to use the transformations between the original coordinates
and the normal form coordinates. Specific examples where M,L and accuracy of the normal
forms and the constancy of integrals of the truncated normal form are considered can be found
in [10, 12–14, 80]. A general discussion of the accuracy of the normal form can be found in
[16].

5. Comparison of phase-space geometry and trajectories for index 1 and index 2 saddles

In this section, we discuss a number of issues that arise from the above results and discussions.
For comparative purposes, it is helpful first to summarize the nature of trajectories that pass
near an index 1 saddle and trajectories that pass near an index 2 saddle.

5.1. Index 1 saddles

For index 1 saddles, it was shown in previous work that for energies above that of the saddle–
center–. . .–center there exists a (2n − 3)-dimensional normally hyperbolic invariant manifold
(NHIM) in the (2n−1)-dimensional energy surface [7, 9, 79]. The NHIM is of saddle stability
type and has (2n − 2)-dimensional stable and unstable manifolds. Since these are one less
dimension than the energy surface, they act as higher dimensional separatrices and serve to
partition phase space into regions corresponding to qualitatively different types of trajectories:

• forward reactive trajectories ≡ (+−),
• forward non-reactive trajectories ≡ (−−),
• backward reactive trajectories ≡ (−+),
• backward non-reactive trajectories ≡ (++),

where we have indicated the correspondence with the trajectory classification introduced in
section 2.

The NHIM is the ‘anchor’ for the construction of a phase-space dividing surface having
the geometrical structure of a (2n − 2)-dimensional sphere. The NHIM is the equator of
this (2n − 2)-dimensional sphere, hence dividing it into two hemispheres. Forward reacting
trajectories pass through one hemisphere and backward reacting trajectories pass through the
other hemisphere. These ‘dividing hemispheres’ have the no-recrossing property in the sense
that the vector field defined by Hamilton’s equations is strictly transverse to each hemisphere.
Moreover, the magnitude of the flux is minimal (and equal) for each hemisphere.

The language used for the description of trajectories for the case of an index 1 saddle is
that of reaction. Trajectories evolve from reactants to products by passing through a dividing
surface that locally ‘divides’ the energy surface into two disjoint pieces–reactants and products.

Here, we have classified trajectories in the vicinity of an index 1 saddle in a slightly less
general but more explicit fashion in terms of their behavior with respect to crossing a potential
barrier; this classification is useful in the treatment of reactive dynamics in the vicinity of
higher index saddles on potential energy surfaces, as discussed below.

5.2. Index 2 saddles

The geometrical structures associated with index 1 saddles provide a rigorous way of
partitioning the phase space into regions that describe the evolution of a system from reactants
to products by passing through a dividing surface having the no-recrossing and minimal flux
properties. This partitioning is made possible by the existence of invariant manifolds that
have the proper dimension and stability type. Moreover, their geometric character is such

13



J. Phys. A: Math. Theor. 42 (2009) 205101 G S Ezra and S Wiggins

that the partitioning that they provide has the natural interpretation of regions of reactants and
products of the energy surface, and the stable and unstable manifolds of the NHIM provide
natural boundaries between these regions.

For index 2 saddles the same types of invariant manifolds still exist—a NHIM and co-
dimension 1 (in the energy surface) invariant manifolds. These co-dimension 1 invariant
manifolds (qi = 0, pi = 0, i = 1, 2) were introduced above and are discussed further below.
It was shown that the passage of trajectories through the neighborhood of the equilibrium could
be understood in terms of a 2 DoF saddle–saddle subsystem and values of the two associated
action integrals.

For index 2 saddles, all trajectories (except for the set of Lebesgue measure zero discussed
above) that enter the neighborhood of the equilibrium point exit the neighborhood of the
equilibrium point, and there are 16 qualitatively different types of trajectories that enter and
exit this neighborhood. These sixteen classes are characterized by their crossing behavior with
respect to the ‘hilltop’ in the potential surface associated with the index 2 saddle.

Two examples involving isomerization reactions where this classification of trajectories
is of chemical relevance are discussed in section 6.

5.3. The role of NHIMs and the existence of co-dimension 1 invariant manifolds
in the energy surface

It has previously been argued [9] that the invariant manifold structure associated with index
1 saddles is a natural generalization to 3 or more DoF of the PODS, and their associated
invariant manifolds, where the latter have provided a fundamental understanding of transition
state theory for systems with 2 DoF [3]. The necessary ingredient to make the leap from
2 DoF to higher DoF is the realization that a NHIM of saddle stability type is the natural
generalization to higher DoF of the periodic orbit of saddle stability type familiar from 2 DoF
[9, 81]. The resulting geometric picture of reaction for N > 2 DoF is essentially that of
the 2 DoF case, the key feature of the generalization being the availability of the necessary
invariant manifolds to partition the energy surface in the multidimensional case in a manner
that is meaningful for reaction.

The situation with index 2 saddles is fundamentally different. On energy surfaces above
that of the saddle, a NHIM still exists, but it is co-dimension 4 in the energy surface with co-
dimension 2 stable and unstable manifolds. Nevertheless, as shown above, it is still possible to
construct co-dimension 1 invariant manifolds (in the energy surface) that locally partition the
energy surface into regions associated with qualitatively different types of trajectories passing
through a neighborhood of the equilibrium point: the surfaces defined by the conditions
q1 = 0, p1 = 0 q2 = 0 and p2 = 0 are each co-dimension 1 invariant manifolds in the
2n-dimensional phase space, and they are also co-dimension 1 invariant manifolds when
intersected with the energy surface. They do not have the property of being compact and
boundaryless like the NHIMs we have discussed above. We would not expect this since
(almost) all trajectories that enter L leave L. These co-dimension 1 invariant manifolds
intersect the boundary of L, and their projection into the q1 − p1 − q2 − p2 space gives the
coordinate axes shown in figure 2. This is consistent with our description of trajectories that
enter and exit L through the use of the integrals I1 and I2.

While the existence of co-dimension 1 invariant manifolds in phase space associated with
index 1 or index 2 saddles is conceptually appealing, practically, their main use derives from
the integrable structure of the normal form and the expression of Hamilton’s equation using
this integrability (e.g. (21)). This expression allows for a decoupling of the dynamics into
unbounded motion (the ‘reactive modes’ described by I1 and I2) and bounded motion (the
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‘bath modes’ described by Ik, k = 3, . . . , n). The ‘reactive dynamics’ is described by a
reduced dimensional system and the dynamics in this system is integrable and characterized
by the level sets of these integrals. The relevant co-dimension 1 invariant manifolds drop out
of this description naturally.

In the earlier work related to index 1 saddles in [8, 9], the integrable structure was not
emphasized and the use of the integrals was not developed. Rather, the emphasis was on
the use of the normal form in discovering the phase-space structures. It was hoped that
a by-product of the normal form computations might be useful and intuitive visualization
methods of the kind that have proved extremely useful and insightful for 2 DoF systems.
However, visualization schemes for the invariant manifolds governing reaction in systems
with 3 and more DoF have thus far been of limited value. In [12], attempts were made
to visualize the phase-space invariant manifolds governing (planar) HCN isomerization in
three dimensions by projecting the manifolds into the three-dimensional configuration space.
In this case, the dividing surface (in a fixed energy surface) was four dimensional with its
equator, the NHIM, three dimensional. It was difficult to interpret their projections into the
three-dimensional configuration space (visually, they did not appear significantly different).
Moreover, reversibility of Hamilton’s equations in this case implies that the projections of
the four-dimensional stable and unstable manifolds into configuration space are identical.
While the visualization of high-dimensional phase-space structures is an appealing concept,
we believe that the dimensional reduction afforded by integrability of the normal form in
a neighborhood of the equilibrium point is a much more powerful tool for understanding
reactive phenomena. It provides a precise notion of dimensional reduction to the number of
DoFs undergoing ‘reactive behavior’ (i.e., the DoF for which there is the possibility of leaving
a neighborhood of the equilibrium point). The significance of integrability was emphasized
in [16] where it was also shown how the phase-space structures can be expressed in terms
of the integrals (which is what we have essentially done here). While their utility for higher
dimensional visualization remains to be demonstrated, for index 1 saddles the dividing surface
plays an important role for a certain type of sampling [11, 13, 14] and the NHIM plays a role
in determining the flux through the dividing surface. We will discuss this in more detail in
section 7.

5.4. Higher index saddles

Once the generalization from index 1 to index 2 saddles has been made, generalization to
higher index saddles is straightforward. For an n DoF deterministic, the time-independent
Hamiltonian system, an index k saddle (1 � k � n) of the potential energy surface
corresponds to an equilibrium point of Hamilton’s equations where the matrix associated
with the linearization of Hamilton’s equations about the equilibrium point has k pairs of real
eigenvalues and n−k pure imaginary pairs of eigenvalues. Assuming that appropriate generic
non-resonance assumptions on the real and imaginary eigenvalues hold, then a transformation
to an integrable Poincaré–Birkhoff normal form in a neighborhood of the equilibrium point
as described above can be carried out. For energies above the equilibrium point, the system
has k integrals describing ‘reactive’ dynamics (i.e., trajectories that can enter and leave a
neighborhood of the equilibrium point) and n − k integrals describing ‘bath modes’ (i.e.,
bounded motions in a neighborhood of the equilibrium point). Hence integrability allows the
reactive dynamics to be studied with a 2k-dimensional reduced system with the k reactive
integrals providing precise information about the nature of trajectories that pass through a
neighborhood of the equilibrium point. Moreover, for energies above the saddle, the system
has a NHIM of dimension 2n − 2k − 1 having (2n − k − 1)-dimensional stable and unstable
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manifolds in the (2n−1)-dimensional energy surface. In the neighborhood of the equilibrium
point, there are 4k qualitatively distinct trajectory classes.

5.5. Quantitative application of Poincaré–Birkhoff normal form theory

Applying the formalism for higher index saddles to realistic molecular systems requires
software that computes the normal form Hamiltonian, extracts the integrals of the motion and
computes the coordinate transformation (and its inverse) from the original physical coordinates
to the normal form coordinates, all to sufficiently high order to yield the desired accuracy (and
accuracy must be assessed by a battery of tests at all points of the calculation). Software to carry
out this program is available at http://lacms.maths.bris.ac.uk/publications/software/index.html.

6. Index 2 saddles and isomerization dynamics

A number of possible contexts in which index 2 saddles might be important have already
been discussed in section 1. It is however useful to specify the possible dynamical role of
index 2 saddles more precisely. We consider two examples: first, the dynamical definition
of stepwise (sequential) versus concerted isomerization mechanisms on a multi-well potential
surface; second, the classification of reactive trajectories in a system in which there are two
distinct transition states. In the latter case, our analysis of dynamics in the vicinity of the
index 2 saddle suggests a rigorous identification of so-called ‘non-MEP’ [57–62] or ‘roaming’
trajectories [63–68] based on phase-space structures.

It should be noted that the partitioning of phase space we discuss is local, that is, restricted
to the vicinity of the index 2 saddle.

6.1. Stepwise versus concerted isomerization

Index 2 saddles are of dynamical significance in the identification of sequential versus
concerted isomerization mechanisms in the case of multiple well isomerizations.

6.1.1. Stepwise versus concerted isomerization in 2 DoF. Consider a system with two
coordinates (q̄1, q̄2) having a multiwell potential surface v(q̄1, q̄2) of the kind shown
schematically in figure 3 12. Such a surface can describe, for example, conformational
energies as a function of internal angles [40] or internal rotation/inversion potentials [41].
(See, for example, figure 1 in [40].)

The model potential shown has four minima. Each potential minimum is given a symbolic
label according to the quadrant of the (q̄1, q̄2) plane in which it is located. For example,
minimum (−−) is located in the quadrant (q̄1 < 0, q̄2 < 0).

The minima are connected by index 1 saddles, each denoted by the symbol ‡. At higher
energy, in the middle of the potential surface, sits an index 2 saddle, denoted by ‡‡ (the
‘hilltop’). (We locate the index 2 saddle at the coordinate origin, (q̄1, q̄2) = (0, 0) and take
the value of the potential at the hilltop to be zero, v(0, 0) = 0.)

For total energies E < 0, the system can only make transitions between minima by
passing through the phase-space dividing surfaces (transition states) associated with the index
1 saddles (NHIMs). For such energies, we can define the distinct bound (reactant) regions of
phase space in the usual way and describe the isomerization kinetics in terms of the associated
phase-space volumes and flux through phase-space dividing surfaces associated with the index
1 saddles.
12 We assume a kinetic energy of standard form, separable and quadratic in the conjugate momenta (p̄1, p̄2).
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Figure 3. Contour plot of a model 2 DoF potential having four minima, four index 1 saddles (‡)
and one index 2 saddle (‡‡).

Classes of isomerizing trajectories associated with particular transitions between wells
can be denoted symbolically: for example, trajectories of type (−+;−−) start in the well
(−−) and pass to the well (−+) through the appropriate dividing surface.

It is clear that, for E < 0, the only way the system can pass from well (−−) to well (++),
say, is by a stepwise mechanism: a sequence of isomerizations such as (+−;−−) followed by
(++; +−) is required.

By contrast, for E > 0, trajectories are in principle able to ‘roam’ around on the potential
surface. In addition to the sequential mechanism just described, there is another possibility,
namely, a hilltop crossing or concerted mechanism, where, for the example just discussed,
a trajectory simply passes ‘directly’ from well (−−) to well (++) without undergoing the
stepwise isomerization process which is necessary for E < 0.

It is then natural to ask: how can we distinguish between these mechanisms in a
dynamically rigorous way? It is not sufficient to analyze trajectories in configuration space,
as both sequentially isomerizing and hilltop crossing trajectories will pass close to the index
2 saddle.

The key to dynamical analysis of isomerizing trajectories is the symbolic trajectory
classification introduced previously. We imagine that the saddle–saddle normal form has been
obtained in the vicinity of the index 2 saddle. This means, in particular, that a (nonlinear, in
general) invertible symplectic transformation T has been obtained relating physical coordinates
(q̄1, p̄1, q̄2, p̄2) and normal form coordinates (q1, p1, q2, p2) [9, 16]:

(q̄, p̄) = T (q, p). (22)

In a phase-space neighborhood of the saddle–saddle equilibrium, it is therefore possible to use
the inverse transformation (q, p) = T −1(q̄, p̄) to determine the normal form coordinates along
a given trajectory. Given these normal form coordinates and the approximate integrability of
the motion in the vicinity of the index 2 saddle, a trajectory with energy E > 0 can be classified
according to the symbolic scheme developed previously.

For the particular kind of potential surface considered here, the symbolic classification
scheme of trajectories using the normal form is precisely the desired classification scheme
for isomerization behavior. For example, a trajectory of type (+−;−−) passes from well
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(−−) to well (+−), and so is part of a sequential isomerization process, while a trajectory of
type (++;−−) is a hilltop crossing trajectory that, as determined by a rigorous phase-space
criterion in the vicinity of the saddle–saddle equilibrium, passes directly from well (−−) to
well (++).

6.1.2. Stepwise versus concerted isomerization in 3 DoF. We now introduce a third mode:
for simplicity, we first consider an uncoupled harmonic oscillator DoF. As discussed in
section 3.3, there is now a saddle–saddle–center equilibrium. For given total energy E,
there will be distinct regimes, depending on the partitioning of energy between mode 3 and
the 2 DoF isomerizing subsystem.

If the total energy E is above that of the index 2 saddle, but there is sufficient energy in
mode 3, then hilltop crossing isomerization is not possible in the 2 DoF subsystem. If on the
other hand the amount of energy in mode 3 is small, then the 2 DoF subsystem can undergo
both sequential and hilltop crossing isomerization. Isomerizing trajectories in the 3 DoF
system can then be classified using the normal form including the center DoF as developed in
section 3.3.

Suppose that mode 3 and the 2 DoF subsystem are now coupled. If we consider the
behavior of trajectories initialized in a region of phase space with a large amount of energy
in mode 3, a relevant question is: what is the mechanism by which the system will pass from
one potential minimum to another, given that the minima in question are separated by more
than one saddle at low energies?

Intuitively, there are two possibilities: if significant energy transfer between mode 3 and
the 2 DoF subsystem does not occur, then the system simply passes from one well to the other
in a sequential fashion. If however energy transfer occurs between mode 3 and the 2 DoF
isomerizing subsystem, it is possible that sufficient energy can pass into the 2 DoF subsystem
so that trajectories can isomerize via the hilltop crossing mechanism. In this case, hilltop
isomerization is mediated by the additional mode.

These dynamical alternatives can in principle be distinguished using the transformation
to normal form coordinates in the vicinity of the saddle–saddle–center equilibrium (cf
section 3.3).

6.2. Competing transition states and non-MEP mechanisms

We now discuss a second example where analysis of the phase-space structure in the vicinity
of an index 2 saddle is potentially useful for obtaining deeper mechanistic understanding of
an isomerization reaction.

Consider the model 2 DoF potential shown in figure 4. This potential has two minima,
two index 1 saddles (having different energies) and one index 2 saddle (energy E = 0). The
index 2 saddle sits between the two index 1 saddles (as per Murrell–Laidler [35]). (See, for
example, the double proton transfer reaction in napthazarin, scheme 14 in [37].)

At total energies E < 0, the system can pass from one well to another through either of
two transition states; in the example shown, the transition state associated with the index 1
saddle at q̄2 < 0 has lower energy, and hence is associated with the ‘minimum energy path’
mechanism.

At energies above that of the higher energy TS (denoted by channel 2), there may
exist some kind of dynamical competition between transition states: the lower energy TS
(channel 1) might be narrow (small flux), while the higher energy TS (channel 2) might be
broader (larger flux).
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Figure 4. Contour plot of a model 2 DoF potential having two minima, two index 1 saddles (‡)
and one index 2 saddle (‡‡).

For energies above the hilltop, E > 0, there are in principle three possibilities: trajectories
can isomerize via channel 1, via channel 2, or they can isomerize by ‘passage over the hilltop’.

Once again, the symbolic classification of trajectories in the vicinity of the saddle–saddle
equilibrium enables the three classes of trajectory to be rigorously identified. Trajectories of
class (+−;−−) correspond to the first mechanism (channel 1), of class (++;−+) to the second
mechanism (channel 2), while trajectories of class (+−;−+) or (++;−−) are associated with
the hilltop crossing isomerization.

All isomerizing trajectories except those of class (+−;−−) can therefore be labeled ‘non-
MEP’ trajectories [57–62], and can tentatively be identified as ‘roaming’ trajectories [63–68].
Numerical studies of the dynamical significance of this local phase-space classification of
trajectories are currently in progress.

7. Summary and conclusions

In this paper, we have analyzed the phase-space structure in the vicinity of an equilibrium point
associated with an index 2 saddle or ‘hilltop’ on a potential energy surface (index 2 saddle).
For the case of model quadratic Hamiltonians, we have shown that the behavior of trajectories
passing through a phase-space neighborhood of the equilibrium is fully characterized by the
value of associated integrals of the motion. We have introduced a symbolic classification of
trajectories in the vicinity of the saddle–saddle equilibrium, where the symbolic representation
of trajectory classes is directly related to the nature of the associated hilltop crossing
dynamics. For the general case where nonlinear terms are present in the Hamiltonian,
Poincaré–Birkhoff normal form theory provides a constructive procedure for obtaining an
integrable approximation to the full Hamiltonian in the vicinity of the equilibrium, allowing a
corresponding classification of trajectories to be made in the general case.

As for the case of index 1 saddles, normally hyperbolic invariant manifolds (NHIMs)
associated with index 2 saddles are an important phase-space structure, and we have described
the role they play in phase-space transport in the vicinity of index 2 saddles. In particular,
we have shown that the normal form transformation enables co-dimension 1 surfaces to be
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defined in phase space; these surfaces serve to partition phase space in the vicinity of the
saddle–saddle equilibrium into regions corresponding to distinct trajectory types.

Two examples of the importance of index 2 saddles in problems of chemical dynamics
were considered. First, isomerization on a potential energy surface with multiple symmetry
equivalent minima; second, isomerization in a system having two potential minima connected
by two distinct transition states associated with conventional index 1 saddles, with an index
2 saddle situated between the two index 1 saddles. We suggest that classification of different
classes of reactive trajectories in the vicinity of the index 2 saddle enables a rigorous definition
of non-MEP trajectories to be given in terms of local phase-space structure.

To conclude, we list several topics that we believe merit further investigation for the case
of index 2 saddles.

Reaction coordinates. For the case of index 1 saddles, a natural definition of a phase-space
reaction coordinate is obtained by putting all of the energy into the reactive mode [12, 16],
i.e., for energy H = E, and the Hamiltonian expressed as a function of the integrals, we set

H(I1, 0, . . . , 0) = E. (23)

This condition defines a path in the ‘reactive plane’ defined by q1 and p1 in normal form
coordinates, which can then be mapped back into the original physical coordinates by the
normal form transformation.

For the case of an index 2 saddle, we have two reactive modes, described by the integrals
I1 and I2, and a four-dimensional ‘reactive space’ defined by the coordinates q1 −p1 −q2 −p2.
Can dynamically significant paths analogous to that for the index 1 saddle be defined in this
reactive space?

Activated complex. For index 1 saddles, the NHIM has the interpretation as the ‘activated
complex’ [9, 16]. Do the NHIMs associated with index k saddles 1 < k � n have a similar
chemical significance?

Flux. For the case of index 1 saddles, the NHIM is the ‘boundary’ of the forward and backward
dividing surfaces. The magnitudes of the fluxes across each of these dividing surfaces are
equal and, using the Stokes theorem, are expressed as the integral of an appropriate quantity
over the NHIM, equal to the volume in the space of ‘bath modes’ enclosed by the contour
defined by H(0, I2, . . . , In) = E [11].

For index 2 (and higher) saddles, it is natural to ask whether or not there is any chemical
significance to the volume in the space of ‘bath modes’ enclosed by the contour defined by
H(0, 0, I3, . . . , In) = E.

Gap times and sampling. Can one develop a useful gap time formalism [82–84] to characterize
rates of passage in and out of phase-space regions defined by the co-dimension 1 surfaces
associated with index 2 saddles (and higher)?

Related to the gap time formalism, it has been shown that the dividing surface provided by
the normal form provides a natural surface on which to sample initial conditions for trajectory
calculations that yield quantities of physical interest such as the reactant volume or dissociation
rate [13, 84]. Does the normal form associated with index 2 saddles yield manifolds on which
a similar trajectory sampling strategy can be implemented?

The manifolds q1 = 0, p1 = 0 q2 = 0 and p2 = 0, a new type of NHIM? We have been careful
not to refer to the co-dimension 1 invariant manifolds defined by q1 = 0, p1 = 0, q2 = 0 and
p2 = 0 as ‘NHIMs’. There are two reasons for this. The first is that they are not of the character
of the NHIMs associated with index 1 saddles, i.e., compact and boundaryless (diffeomorphic
to spheres), having (invariant) stable and unstable manifolds (locally) partitioning the energy
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surface into reactants and products, and ‘persistent under perturbations’ (practically, this means
that the manifolds maintain their character for a range of energy above that of the saddle).
The second is that they do not immediately satisfy the hypotheses of the existing normally
hyperbolic invariant manifold theorems [79]. This latter point deserves more discussion.
Roughly speaking, the property of ‘normal hyperbolicity’ means that, under linearized
dynamics, the magnitude of the growth and decay of vectors normal to the manifolds dominate
the magnitude of the growth and decay of vectors tangent to the manifold. The manifolds under
consideration are obtained by setting one coordinate to zero. Therefore, the growth of vectors
under the linearized dynamics in the direction of the coordinate set to zero describes the normal
dynamics, and it is a simple matter to verify that in this direction vectors are either exponentially
growing or decaying (depending on the manifold under consideration). The problem is that
there will also be directions tangent to the manifold that are exponentially growing or decaying.
Additionally, these manifolds are not compact and boundaryless. Sometimes this difficulty
can be dealt with through a consideration of ‘overflowing’ or ‘inflowing’ invariance (see [79]
for examples and related references). Nevertheless, the manifolds do exist for the normal
form truncated at any order, and this is sufficient for our purposes. Using this property and
the ideas and setting just described, it may be possible to prove something like a ‘persistence
theorem for normally hyperbolic invariant manifolds’ for this setting, but we do not pursue
that problem here.

Addressing several of these issues will require globalizing the invariant manifolds
obtained in the vicinity of the saddle–saddle equilibrium. Indeed, globalization constitutes an
outstanding challenge for the theory of the dynamics associated with higher index saddles.
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Appendix. Phase-space geometry and transport associated with an n DoF quadratic
Hamiltonian of a saddle–saddle–center–. . .–center equilibrium point

The following quadratic Hamiltonian describes the dynamics near a saddle–saddle–center–
. . .–center stability type equilibrium point located at the origin:

Hn−quad = λ1q1p1 + λ2q2p2 +
n∑

i=3

ωi

2

(
q2

i + p2
i

)
, (A.1)

with associated Hamilton’s equations:

q̇1 = ∂Hn−quad

∂p1
= λ1q1, (A.2a)

ṗ1 = −∂Hn−quad

∂q1
= −λ1p1, (A.2b)

q̇2 = ∂Hn−quad

∂p2
= λ2q2, (A.2c)

ṗ2 = −∂Hn−quad

∂q2
= −λ2p2, (A.2d)
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q̇i = ∂Hn−quad

∂pi

= ωipi, i = 3, . . . , n, (A.2e)

ṗi = −∂Hn−quad

∂qi

= −ωiqi, i = 3, . . . , n. (A.2f )

It is straightforward to verify that I1 = q1p1, I2 = q2p2, Ik = ωk

2

(
q2

k + p2
k

)
, k = 3, . . . , n are

(independent) integrals of the motion for (A.1). As previously, we define a neighborhood of
the saddle–saddle–center equilibrium point in phase space as follows:

L ≡ {(q1, p1, . . . , qn, pn) | |qi | � εi, |pi | � εi, i = 1, . . . , n}, (A.3)

for appropriately chosen εi > 0, i = 1, . . . , n. Again, the fact that Hamilton’s equations are
separable, and that the motion of qk and pk is bounded, k = 3, . . . , n means that the issue of
trajectories entering L and exiting L depends entirely on the behavior of the (q1, p1, q2, p2)

components of a trajectory and, as a consequence of separability, this behavior is exactly as
described in section 3.2.

As for the 3 DoF case considered in section 3, the equilibrium point is located at the
origin and has zero energy, and we will consider geometric structures in the energy surface
for positive energies:

Hn−quad = λ1q1p1 + λ2q2p2 +
n∑

k=3

ωk

2

(
q2

k + p2
k

) = E > 0. (A.4)

It is clear from (A.4) that q1 = p1 = q2 = p2 = 0 is a two-dimensional invariant manifold in
the 2n-dimensional phase space. Using (A.4), its intersection with the (2n − 1)-dimensional
energy surface is given by

n∑

k=3

ωk

2

(
q2

k + p2
k

) = E > 0. (A.5)

This is the equation for a (2n − 5)-dimensional sphere, S2n−5, in the energy surface; as
above, it is an example of a NHIM [7, 79]. The coordinates q1, p1, q2, p2 can be viewed
as coordinates for the normal directions of the NHIM, and it follows from the nature of
the asymptotic (in time) behavior of these coordinates (see (A.2)) that this NHIM has a
(2n − 3)-dimensional stable manifold and a (2n − 3)-dimensional unstable manifold in the
(2n − 1)-dimensional energy surface.
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